0

Na UW zbadano żuchwę prassaka z Grenlandii

Szkic prassaka z Grenlandii
Szkic prassaka – z Grenlandii
fot. PNAS

Dzięki modelowaniu i drukowi 3D paleontolodzy z UW dokładnie zbadali żuchwę prassaka z Grenlandii.

Nowe technologie zrewolucjonizowały paleontologię.
Na podstawie żuchwy nowo odkrytego prassaka naukowcom udało się niedawno wyjaśnić, dlaczego u ssaków, w przeciwieństwie do innych zwierząt, zęby trzonowe mają więcej niż jeden korzeń. Tomografia komputerowa, modelowanie i druk 3D oraz analizy biomechaniczne pozwoliły sprawdzić, jak nasi przodkowie, przechodząc z owadożerności na wszystkożerność, zmodyfikowali swoje trzonowce. Nowe technologie pozwalają też zobaczyć, jak poszczególne kości reagują na naprężenia i jak zmiana kształtu kości wpływa na ich odporność.

W 2014 roku polscy badacze znaleźli na Grenlandii, w skałach sprzed 215 mln lat, szczątki najstarszego na świecie prassaka.

Dr Mateusz Tałanda z Instytutu Biologii Ewolucyjnej Wydziału Biologii Uniwersytetu Warszawskiego:

Znaleźliśmy niekompletną żuchwę prassaka z Grenlandii zawierającą dwa zęby. Wydaje się, że to jest bardzo niewiele. Ale w czasie, z którego pochodzi ta skamieniałość, ponad 200 mln lat temu, nasi przodkowie przechodzili bardzo intensywną ewolucję uzębienia i żuchwy. Wtedy powstała charakterystyczna dla naszego organizmu budowa ucha wewnętrznego, wtedy też powstały korzenie w zębach policzkowych, rozdzielone na dwa lub trzy.

Odnaleziona żuchwa, jak się niedawno okazało, stanowiła przełom w ewolucji. Prassak z Grenlandii to nowy gatunek, pierwsze poznane ogniwo przejściowe między drobnymi owadożernymi prassakami a większymi, wszystkożernymi potomkami. Ich zęby są bardzo odmienne, a na podstawie szczątków udało się zobaczyć, jak wyglądało przejście z morfologii jednych do drugich. Gatunek kalaallitkigun jenkinsi jest najstarszym znanym prassakiem, który ma trzonowce z dwoma korzeniami.

Zdjęcie żuchwy prassaka z Grenlandii. Źr. PNAS
Zdjęcie żuchwy prassaka – z Grenlandii
fot. PNAS

Polscy naukowcy na wirtualnych modelach 3D sprawdzili, jak podział korzenia na dwa osobne wpływa na wytrzymałość zęba podczas gryzienia.

Dr Mateusz Tałanda:

Stworzyliśmy model trójwymiarowy takiego zęba za pomocą tomografii komputerowej, a następnie za pomocą analiz biomechanicznych sprawdziliśmy, co się będzie z nim działo, gdy poddamy go charakterystycznym naprężeniom podczas gryzienia. Porównaliśmy to z identycznym modelem zęba, u którego sztucznie połączyliśmy te korzenie ze sobą w jeden, czyli stworzyliśmy ząb, który pokazywał stan przodka, stan wcześniejszy. Okazało się, że ząb z rozdzielonymi korzeniami reagował na naprężenia znacznie lepiej niż ząb z połączonymi korzeniami, co pokazuje, że ta zmiana miała bardzo ważne znaczenie adaptacyjne i zwiększyła odporność zębów na złamanie.

To przełomowe odkrycie. Wcześniej nikt nie znał przyczyny, dlaczego u ssaków korzenie zębów policzkowych są rozdzielone. To tylko pokazuje, jak ogromne znaczenie w paleontologii ma zastosowanie nowoczesnych technologii. Rozwój dużych internetowych baz danych paleontologicznych, stosowanie coraz bardziej wyrafinowanych modeli numerycznych do określania relacji między organizmami żywymi a organizmami kopalnymi oraz dostępność coraz dokładniejszych metod obrazowania, nie tylko w odniesieniu do postaci organizmów, ale także ich składu chemicznego, całkowicie zmieniły tę gałąź nauki.

Dr Mateusz Tałanda z Instytutu Biologii Ewolucyjnej Uniwersytetu Warszawskiego
Dr Mateusz Tałanda – z Instytutu Biologii Ewolucyjnej Uniwersytetu Warszawskiego
fot. Newseria

Dr Mateusz Tałanda:

Za pomocą tomografii komputerowej udało nam się zajrzeć w głąb skamieniałości i obejrzeć ją z każdej strony. Dzięki temu mogliśmy zobaczyć budowę tego zęba ze wszystkich stron, we wszystkich trzech wymiarach. To było niezwykle istotne, by móc stworzyć realistyczne modele do analiz biomechanicznychTechnika finite element analysis pozwoliła natomiast zobaczyć, jak poszczególne kości reagują na naprężenia i jak zmiana kształtu kości wpływa na ich odporność.

Wielu odkryć mogłoby nie być, gdyby nie wizualizacje i druk 3D. Wcześniejsze odlewy powstawały z gipsu, żywicy czy silikonu, nie pozwalały na odtworzenie całego kształtu skamieniałości i narażały je na uszkodzenia przy procesie tworzenia odlewów.

Dr Mateusz Tałanda:

Wydruk i modelowanie 3D pozwala na dokładne badanie bardzo delikatnych skamieniałości w o wiele precyzyjniejszy sposób. Do tej pory, gdy mieliśmy do czynienia z dużymi kośćmi, np. dinozaurów, mogliśmy je z łatwością oczyścić ze skały, obejrzeć z każdej strony. W przypadku bardzo małych skamieniałości, do których właśnie zaliczani są przodkowie ssaków, to nie było możliwe. W tej chwili możemy swobodnie to robić, możemy model takiej skamieniałości, która ma kilka milimetrów średnicy, wydrukować w kilkukrotnym czy kilkudziesięciokrotnym powiększeniu i oglądać równie łatwo jak kości dużych dinozaurów.

Paleontologię zmienił także synchrotron, który wytwarza wiązki promieni rentgenowskich o wysokiej energii. Może  służyć do tworzenia szczegółowych map składu chemicznego skamieniałości i otaczających skał. Z kolei w badaniu śladów dinozaurów w Alpach pomagają drony.

Za pomocą bardzo wielu zwykłych zdjęć możemy zrobić fotogrametrię, czyli tworzenie modeli trójwymiarowych. I w ten sposób możemy odtworzyć w trójwymiarowej przestrzeni całą ścieżkę zostawioną przez duże zwierzę w bardzo trudno dostępnym regionie ze wszystkimi szczegółami.

Agencja Newseria
Zdjęcia naukowe: Proceedings of the National Academy of Sciences USA

23 marca 2021 10:00
[fbcomments]